Package: FASeg (via r-universe)

October 8, 2024

Type Package
Title Joint Segmentation of Correlated Time Series
Version 0.1.9
Date 2018-03-09
Author Xavier Collilieux, Emilie Lebarbier and Stephane Robin
Maintainer Emilie Lebarbier <emilie.lebarbier@agroparistech.fr></emilie.lebarbier@agroparistech.fr>
Description It contains a function designed to the joint segmentation in the mean of several correlated series. The method is described in the paper X. Collilieux, E. Lebarbier and S. Robin. A factor model approach for the joint segmentation with between-series correlation (2015) <arxiv:1505.05660>.</arxiv:1505.05660>
License GPL-2
Depends R (>= 2.10)
NeedsCompilation no
Date/Publication 2018-03-09 12:59:37 UTC
Repository https://emilielebarbier.r-universe.dev
RemoteUrl https://github.com/cran/FASeg
RemoteRef HEAD
RemoteSha 48de4da5884fff67109cb79231d480b2f1664943
Contents
FASeg-package 2 F_FASeg 2 Y 2
Index

 F_FASeg

FASeg-package

Joint Segmentation of Set of Correlated Time-Series

Description

FASeg contains a function designed to the joint segmentation (the segmentation is series-specific) in the mean of several correlated series. The form of the correlation is assumed to be arbitrary and we propose to model it with a factor model. A EM algorithm is used to estimate the parameters and a model selection strategy is proposed to determine both the number of breakpoints and the number of factors

Author(s)

Xavier Collilieux, Emilie Lebarbier and Stephane Robin

Maintainer: Emilie Lebarbier <emilie.lebarbier@agroparistech.fr>

References

A factor model approach for the joint segmentation with between-series correlation (arXiv:1505.05660)

Examples

```
library(FASeg)
data(Y)
M=max(Y$series)
uniKmax=3
multiKmax=11
qmax=M-1
selection=FALSE
WithoutCorr=FALSE
seg=F_FASeg(Y,uniKmax,multiKmax,qmax,selection,WithoutCorr)
```

F_FASeg

Joint Segmentation of Set of Correlated Time-Series

Description

This function is dedicated to the joint segmentation (the segmentation is series-specific) in the mean of several correlated series. The form of the correlation is assumed to be arbitrary and we propose to model it with a factor model. A EM algorithm is used to estimate the parameters. A model selection procedure is also proposed to determine both the number of breakpoints and the number of factors.

Usage

```
F_FASeg(Y, uniKmax, multiKmax, qmax, selection, WithoutCorr)
```

F_FASeg 3

Arguments

Υ Data frame, with size [(n*M) x 3], which contains the data and other informa-

tions, n is the length of each series and M is the number of series

Maximal number of segments per series (uniKmax will be lower or equal to n) uniKmax

multiKmax Maximal number of segments for all the series (multiKmax will be greater or

equal to M)

qmax Maximal number of factors (qmax will be lower or equal to M-1) (default qmax=M-

1). If qmax=0 then a joint segmentation with multiKmax segments and without

taking into account the correlation between series is performed

selection A logical value indicating if the selection of the number of segments K and the

number of factors Q is performed (default=TRUE). If it is TRUE, K and Q are

selected; if it is FALSE, K is fixed to multiKmax and Q is fixed to qmax

A logical value indicating if, when K and Q are selected, the joint segmenta-WithoutCorr

tion without taking into account the correlation between series is also a possible

solution in the selection (default=FALSE)

Value

Contains the following attributes:

SelectedK Selected number of segments for all the series if selection=TRUE, the number

of segments fixed by the user otherwise (K=multiKmax)

Selectedq Selected number of factors if selection=TRUE, the number of factors fixed by

the user otherwise (Q=qmax)

SelectedSigma Estimation of the covariance matrix Sigma

SelectedPsi Estimation of the matrix Psi

SelectedB Estimation of the matrix of coefficients B

SelectedZ Estimation of the latent vectors Z

SelectedSeg Optimal segmentation with a selected or fixed value of the number of segments

and the number of factors

Author(s)

Xavier Collilieux, Emilie Lebarbier and Stephane Robin

References

A factor model approach for the joint segmentation with between-series correlation (arXiv:1505.05660)

4 Y

Υ

Matrix of data

Description

A data frame [(n x M) x 3] containing 5 Gaussian series with size n=50 each simulated as in the paper arXiv:1505.05660 (with rho=0.6 and sigma=0.2). The total number of segments is K=11 or 6 breakpoints (at position 39 for series 1; 35 for series 2; no breaks for series 3; 11 for series 4 and 2, 3 and 12 for series 5).

Usage

data(Y)

Format

A data frame with 250 observations on the following 3 variables.

```
series a numeric vector
position a numeric vector
signal a numeric vector
```

Details

series: the number of the series; position: the grid {1:n}; signal: the values of the observed signal

Examples

```
library(FASeg)
data(Y)
```

Index

```
* Dynamic programming; EM algorithm;
Factor model; Segmentation;
Model selection; Multivariate
time-series
FASeg-package, 2
* datasets
Y, 4

F_FASeg, 2
FASeg (FASeg-package), 2
FASeg-package, 2
Y, 4
```